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Abstract: The main objective of this paper is to study the boundedness character, the periodicity character, the
convergence and the global stability of positive solutions of the difference equation

xn+1 =
α0xn + α1xn−l + α2xn−m + α3xn−k

β0xn + β1xn−l + β2xn−m + β3xn−k
, n = 0, 1, 2, · · ·

where the coefficients αi, βi ∈ (0,∞) for i = 0, 1, 2, 3, and l,m, k are positive integers. The initial conditions
x−k,...,x−m,...,x−l, ...,x−1, x0 are arbitrary positive real numbers such that l < m < k. Some numerical experi-
ments are presented.
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1 Introduction
Our goal in this paper is to investigate the bounded-
ness character, the periodicity character, the conver-
gence and the global stability of positive solutions of
the difference equation

xn+1 =
α0xn + α1xn−l + α2xn−m + α3xn−k

β0xn + β1xn−l + β2xn−m + β3xn−k
,

n = 0, 1, 2, ..... (1)

where the coefficients αi, βi ∈ (0,∞) for i =
0, 1, 2, 3, and l,m, k are positive integers. The ini-
tial conditions x−k,...,x−m,...,x−l, ...,x−1, x0 are ar-
bitrary positive real numbers such that l < m < k.
We consider numerical examples which represent d-
ifferent types of solutions to Eq.(1). The case when
any of αi, βi for i = 0, 1, 2, 3 allowed to be zero
gives different special cases of Eq.(1) which are stud-
ied by many authors, (see for example [1– 16]). For
the related work see [17–46]. The study of these e-
quations is challenging and rewarding and is still in its
infancy. We believe that the nonlinear rational differ-
ence equations are of paramount importance in their
own right. Furthermore, the results about such equa-
tions offer prototypes for the development of the basic
theory of the global behavior of nonlinear difference
equations. Note that Eq.(1) can be considered as a
generalization of that obtained in [9,35,45].

Definition 1 A difference equation of order (k + 1) is
of the form

xn+1 = F (xn, xn−1, ..., xn−l, ..., xn−m, ..., xn−k),
n = 0, 1, 2, .....

(2)
with l < m < k where F is a continuous function

which maps some set Jk+1 into J and J is a set of real
numbers. An equilibrium point x̃ of this equation is a
point that satisfies the condition x̃ = F (x̃, x̃, ...., x̃) .
That is, the constant sequence {xn}∞n=−k with xn =
x̃ for all n ≥ −k is a solution of that equation.

Definition 2 Let x̃ ∈ (0,∞) be an equilibrium point
of the difference equation (2). Then we have the fol-
lowing:

(i) An equilibrium point x̃ of the difference equation
(2) is called locally stable if for every ε > 0 there
exists δ > 0 such that, if x−k, ..., x−1, x0 ∈ (0,∞)
with |x−k − x̃|+ ...+ |x−1 − x̃|+ |x0 − x̃| < δ, then
|xn − x̃| < ε for all n ≥ −k.

(ii) An equilibrium point x̃ of the difference equation
(2) is called locally asymptotically stable if it is locally
stable and there exists γ > 0 such that, if x−k, ...,
x−1, x0 ∈ (0,∞) with |x−k − x̃| + ... + |x−1 − x̃| +
|x0 − x̃| < γ, then

lim
n→∞

xn = x̃.
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(iii) An equilibrium point x̃ of the difference equation
(2) is called a global attractor if for every x−k, ..., x−1,
x0 ∈ (0,∞) we have

lim
n→∞

xn = x̃.

(iv) An equilibrium point x̃ of the equation (2) is
called globally asymptotically stable if it is locally
stable and a global attractor.

(v) An equilibrium point x̃ of the difference equation
(2) is called unstable if it is not locally stable.

Definition 3 We say that a sequence {xn}∞n=−k is
bounded and persisting if there exist positive con-
stants m and M such that

m ≤ xn ≤M, n ≥ −k.

Definition 4 A sequence {xn}∞n=−k is said to be pe-
riodic with period r if xn+r = xn for all n ≥ −k. A
sequence {xn}∞n=−k is said to be periodic with prime
period r if r is the smallest positive integer having
this property.

2 Local stability of the equilibrium
point

In this section we study the local stability character of
the solutions of Eq.(1). Assume that ã =

∑3
i=0 αi and

b̃ =
∑3

i=0 βi. Then the positive equilibrium point x̃ of
Eq.(1) is given by

x̃ = ã/b̃.

Let F : (0,+∞)4 −→ (0,+∞) be a continuous
function defined by

F (u0, u1, u2, u3) =
α0u0 + α1u1 + α2u2 + α3u3
β0u0 + β1u1 + β2u2 + β3u3

.

(3)
Then the linearized equation associated with Eq.(1)
about the positive equilibrium point x̃ takes the form

yn+1+a3yn+a2yn−l+a1yn−m+a0yn−k = 0, (4)

where

(α0β1−α1β0)+(α0β2−α2β0)+(α0β3−α3β0)

ã b̃
= − a3,

(α1β0−α0β1)+(α1β2−α2β1)+(α1β3−α3β1)

ã b̃
= − a2,

(α2β0−α0β2)+(α2β1−α1β2)+(α2β3−α3β2)

ã b̃
= − a1,

(α3β0−α0β3)+(α3β1−α1β3)+(α3β2−α2β3)

ã b̃
= − a0.

(5)
The characteristic equation of the linearized equation
(4) is

λn+1+a3λ
n+a2λ

n−l+a1λ
n−m+a0λ

n−k = 0. (6)

Theorem 1 ([16,20] The linearized stability theo-
rem) Suppose F is a continuously differentiable func-
tion defined on an open neighborhood of the equilib-
rium point x̃. Then the following statements are true.
(i) If all roots of the characteristic equation (6) of the
linearized equation (4) have absolute value less than
one, then the equilibrium point x̃ is locally asymptot-
ically stable.
(ii) If at least one root of Eq.(6) has absolute value
greater than one, then the equilibrium point x̃ is un-
stable.

Theorem 2 ([16]). Assume that pi ∈ R, i =
1, 2, ...k. Then

k∑
i=1

|pi| < 1 (7)

is a sufficient condition for the asymptotic stability of
the difference equation

xn+k+p1xn+k−1+ .....+pkxn = 0, n = 0, 1, 2, ....
(8)

Theorem 3 Assume that

|(α0β1 − α1β0) + (α0β2−α2β0) + (α0β3 − α3β0)|
+ |(α1β0−α0β1) + (α1β2−α2β1) + (α1β3 − α3β1)|
+ |(α2β0−α0β2)+ (α2β1−α1β2) + (α2β3−α3β2)|
+ |(α3β0−α0β3) + (α3β1−α1β3) + (α3β2−α2β3)|
< ã b̃.

Then the positive equilibrium point x̃ of Eq.(1) is lo-
cally asymptotically stable.

Proof. It is obvious from (5) and the assumption of
Theorem 3 that

3∑
i=0

|ai| < 1.

It follows by Theorem 2 that Eq.(1) is asymptotically
stable.

3 Boundedness of the solutions

In this section we study the boundedness and persist-
ing character of the positive solutions of Eq.( 1) .

Theorem 4 Every solution of Eq.(1) is bounded and
persisting.

Proof. Let
m = min {αi, i = 0, ..., 3} ,
M = max {αi, i = 0, ..., 3} ,
l = min {βi, i = 0, ..., 3} ,
L = max {βi, i = 0, ..., 3} ,

(9)
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we have

m(xn+xn−l+xn−m+xn−k)
L(xn+xn−l+xn−m+xn−k)

≤ xn+1 ≤ M(xn+xn−l+xn−m+xn−k)
l(xn+xn−l+xn−m+xn−k)

(10)

⇔ m

L
≤ xn+1 ≤

M

l

which implies that every solution of Eq.(1) is bounded
and persisting. Now, the proof is completed.

4 Periodicity of the solutions

In this section we study the periodic character of the
positive solutions of Eq.(1).

Theorem 5 Eq.(1) has no positive solutions of prime
period two if one of the following conditions holds:

(1) The positive integers l,m and k are even.
(2) The positive integers l,m are even and the

positive integer k is odd provided α0+α1+α2 ≥ α3.
(3) The positive integers l,m are odd and the pos-

itive integer k is even provided α0 + α3 ≥ α1 + α2.
(4) The positive integers l, k are even and the pos-

itive integer m is odd provided α0 + α1 + α3 ≥ α2.
(5) The positive integers m, k are even and the

positive integer l is odd provided α0+α2+α3 ≥ α1.
(6) The positive integers m, k are odd and the

positive integer l is even provided α0+α1 ≥ α2+α3.
(7) The positive integers l, k are even and the pos-

itive integer m is odd provided α0 + α2 ≥ α1 + α3.
(8) The positive integers l,m, k are odd, α1 +

α2 + α3 ≥ α0 and β1 + β2 + β3 > β0.

Proof. Suppose that there exist positive distinctive so-
lutions of prime period two

......., P,Q, P,Q, ........

of Eq.(1). Now, we discuss the following cases:
Case 1. l,m and k are even positive integers. In this
case xn = xn−l = xn−m = xn−k. Then there exist a
positive period two solution {xn} such that

x2q = P, q = −1, 0, 1, ....

x2q+1 = Q, q = −1, 0, 1, ....

and P ̸= Q. From Eq.(1) we have

P = Q = ã/b̃.

This is a contradiction. Thus, Eq.(1) has no prime
period two solution.

Case 2. l,m are positive even integers and k is a
positive odd integer. In this case xn = xn−l = xn−m

and xn+1 = xn−k. From Eq.(1) we have

P =
(α0 + α1 + α2)Q+ α3P

(β0 + β1 + β2)Q+ β3P
,

Q =
(α0 + α1 + α2)P + α3Q

(β0 + β1 + β2)P + β3Q
.

Consequently, we obtain

(α0 + α1 + α2)Q+α3P = (β0 + β1 + β2)PQ+β3P
2

and

(α0 + α1 + α2)P+α3Q = (β0 + β1 + β2)PQ+β3Q
2.

By subtracting we have

P +Q = − [(α0 + α1 + α2)− α3]

β3
.

Since α0+α1+α2 ≥ α3, we have P +Q ≤ 0. Thus,
we have a contradiction.
Case 3. l,m are positive odd integers and k is a
positive even integer. In this case xn+1 = xn−l =
xn−m and xn = xn−k. From Eq.(1) we have

P =
(α1 + α2)P + (α0 + α3)Q

(β1 + β2)P + (β0 + β3)Q
,

Q =
(α1 + α2)Q+ (α0 + α3)P

(β1 + β2)Q+ (β0 + β3)P
.

Consequently, we obtain

(α1 + α2)P+(α0 + α3)Q = (β1 + β2)P
2+(β0 + β3)PQ

and

(α1 + α2)Q+(α0 + α3)P = (β1 + β2)Q
2+(β0 + β3)PQ.

By subtracting we have

P +Q = − [(α0 + α3)− (α1 + α2)]

β1 + β2
.

Since (α0 + α3) ≥ (α1 + α2) , we have P +Q ≤ 0. Thus,
we have a contradiction.
Case 4. l, k are positive even integers and m is a positive
odd integer. In this case xn = xn−l = xn−k and xn+1 =
xn−m. From Eq.(1) we have

P =
(α0 + α1 + α3)Q+ α2P

(β0 + β1 + β3)Q+ β2P
,

Q =
(α0 + α1 + α3)P + α2Q

(β0 + β1 + β3)P + β2Q
.
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Consequently, we obtain

(α0 + α1 + α3)Q+ α2P = (β0 + β1 + β3)PQ+ β2P
2

and

(α0 + α1 + α3)P +α2Q = (β0 + β1 + β3)PQ+ β2Q
2.

By subtracting, we have

P +Q = − [α0 + α1 + α3 − α2]

β2
.

Since (α0 + α1 + α3) ≥ α2, we have P + Q ≤ 0. Thus,
we have a contradiction.
Case 5. m, k are positive even integers and l is a positive
odd integer. In this case xn = xn−m = xn−k and xn+1 =
xn−l. From Eq.(1) we have

P =
(α0 + α2 + α3)Q+ α1P

(β0 + β2 + β3)Q+ β1P
,

(α0 + α2 + α3)P + α1Q

(β0 + β2 + β3)P + β1Q
.

Consequently, we obtain

(α0 + α2 + α3)Q+ α1P = (β0 + β2 + β3)PQ+ β1P
2

and

(α0 + α2 + α3)P +α1Q = (β0 + β2 + β3)PQ+ β1Q
2.

By subtracting we have

P +Q = − [α0 + α2 + α3 − α1]

β1
.

Since (α0 + α2 + α3) ≥ α1, we have P + Q ≤ 0. Thus,
we have a contradiction.
Case 6. m, k are positive odd integers and l is a positive
even integer. In this case xn+1 = xn−m = xn−k and
xn = xn−l. From Eq.(1) we have

P =
(α0 + α1)Q+ (α2 + α3)P

(β0 + β1)Q+ (β2 + β3)P
,

Q =
(α0 + α1)P + (α2 + α3)Q

(β0 + β1)P + (β2 + β3)Q
.

Consequently, we obtain

(α0 + α1)Q+(α2 + α3)P = (β0 + β1)PQ+(β2 + β3)P
2

and

(α0 + α1)P+(α2 + α3)Q = (β0 + β1)PQ+(β2 + β3)Q
2.

By subtracting we have

P +Q = − [(α0 + α1)− (α2 + α3)]

(β2 + β3)
.

Since (α0 + α1) ≥ (α2 + α3) , we have P +Q ≤ 0. Thus,
we have a contradiction.
Case 7. l, k are positive odd integers and m is a positive
even integer. In this case xn+1 = xn−l = xn−k and xn =
xn−m. From Eq.(1) we have

P =
(α0 + α2)Q+ (α1 + α3)P

(β0 + β2)Q+ (β1 + β3)P
,

Q =
(α0 + α2)P + (α1 + α3)Q

(β0 + β2)P + (β1 + β3)Q
.

Consequently, we obtain

(α0 + α2)Q+(α1 + α3)P = (β0 + β2)PQ+(β1 + β3)P
2

and

(α0 + α2)P+(α1 + α3)Q = (β0 + β2)PQ+(β1 + β3)Q
2.

By subtracting we have

P +Q = − [(α0 + α2)− (α1 + α3)]

(β1 + β3)
.

Since (α0 + α2) ≥ (α1 + α3) , we have P +Q ≤ 0. Thus,
we have a contradiction.
Case 8. l,m and k are positive odd integers. In this case
xn+1 = xn−l = xn−m = xn−k. From Eq.(1) we have

P =
α0Q+ (α1 + α2 + α3)P

β0Q+ (β1 + β2 + β3)P
,

Q =
α0P + (α1 + α2 + α3)Q

β0P + (β1 + β2 + β3)Q
.

Consequently, we obtain

α0Q+ (α1 + α2 + α3)P = β0PQ+ (β1 + β2 + β3)P
2

and

α0P + (α1 + α2 + α3)Q = β0PQ+ (β1 + β2 + β3)Q
2.

By subtracting we have

P +Q =
[(α1 + α2 + α3)− α0]

β1 + β2 + β3
,

while, by adding we obtain

PQ = − α0 [(α1 + α2 + α3)− α0]

(β1 + β2 + β3) [(β1 + β2 + β3)− β0]
.

Since (α1 + α2 + α3) > α0 and (β1 + β2 + β3) > β0
we have PQ < 0. Thus, we have a contradiction.

Theorem 6 If l,m, k are odd, α1 + α2 + α3 > α0 and
β1 + β2 + β3 < β0, then the necessary and sufficient con-
dition for Eq.(1) to have positive solutions of prime period
two is that the inequality

4α0(β1 + β2 + β3)
< [(α1 + α2 + α3)− α0][β0 − (β1 + β2 + β3)]

(11)

is valid.
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Proof. Suppose that there exist positive distinctive solu-
tions of prime period two

......., P,Q, P,Q, ........

of Eq.(1). Since l,m, k are odd, we have xn+1 = xn−l =
xn−m = xn−k. From Eq.(1) we have

P =
α0Q+ (α1 + α2 + α3)P

β0Q+ (β1 + β2 + β3)P
,

Q =
α0P + (α1 + α2 + α3)Q

β0P + (β1 + β2 + β3)Q
.

Consequently, we obtain

α0Q+ (α1 + α2 + α3)P = β0PQ+ (β1 + β2 + β3)P
2

and

α0P + (α1 + α2 + α3)Q = β0PQ+ (β1 + β2 + β3)Q
2.

By subtracting we have

P +Q =
[(α1 + α2 + α3)− α0]

β1 + β2 + β3
, (12)

while, by adding we obtain

PQ =
α0 [(α1 + α2 + α3)− α0]

(β1 + β2 + β3) [β0 − (β1 + β2 + β3)]
(13)

where (α1 + α2 + α3) > α0 and β0 > (β1 + β2 + β3) .
Assume that P and Q are two positive distinct real roots
of the quadratic equation

t2 − ( P +Q) t+ PQ = 0. (14)

Thus, we deduce that(
[(α1+α2+α3)−α0]

β1+β2+β3

)2
>

4
(

α0[(α1+α2+α3)−α0]
(β1+β2+β3)[β0−(β1+β2+β3)]

)
.

(15)

From (15), we obtain

4α0 (β1 + β2 + β3)
< [(α1 + α2 + α3)− α0][β0 − (β1 + β2 + β3)].

Thus the condition (11) is valid. Conversely, suppose that
the condition (11) is valid where (α1 + α2 + α3) > α0 and
β0 > (β1 + β2 + β3) . Then, we deduce immediately from
(11) that the inequality (15) holds. There exist two positive
distinctive real numbers P and Q representing two positive
roots of Eq.(14) such that

P =
[(α1 + α2 + α3)− α0] + δ

2 (β1 + β2 + β3)
(16)

and

Q =
[(α1 + α2 + α3)− α0]− δ

2 (β1 + β2 + β3)
(17)

where

δ2 = [(α1 + α2 + α3)− α0]
2

− 4α0(β1+β2+β3)[(α1+α2+α3)−α0]
[β0−(β1+β2+β3)]

.

Now, we are going to prove that P and Q are positive
solutions of prime period two of Eq.(1). To this end, we
assume that

x−k = Q, ..., x−m = Q, ..., x−l = Q, ..., x−1 = Q,

and x0 = P. Now, we are going to show that x1 = Q and
x2 = P. From Eq.(1) we deduce that

x1 = α0x0+α1x−l+α2x−m+α3x−k

β0x0+β1x−l+β2x−m+β3x−k

= α0P+(α1+α2+α3)Q
β0P+(β1+β2+β3)Q

.
(18)

Substituting (16) and (17) into (18) we deduce that

x1 −Q = α0P+(α1+α2+α3)Q
β0P+(β1+β2+β3)Q

−β0PQ+(β1+β2+β3)Q
2

β0P+(β1+β2+β3)Q
= B−C

D ,
(19)

where

B = α0

(
[(α1+α2+α3)−α0]+δ

2(β1+β2+β3)

)
+(α1 + α2 + α3)

(
[(α1+α2+α3)−α0]−δ

2(β1+β2+β3)

)
C = β0

(
α0[(α1+α2+α3)−α0]

(β1+β2+β3)[β0−(β1+β2+β3)]

)
+(β1 + β2 + β3)

(
[(α1+α2+α3)−α0]−δ

2(β1+β2+β3)

)2
,

D = β0

(
[(α1+α2+α3)−α0]+δ

2(β1+β2+β3)

)
+(β1 + β2 + β3)

(
[(α1+α2+α3)−α0]−δ

2(β1+β2+β3)

)
.

Multiplying the denominator and numerator of (19) by
4 (β1 + β2 + β3)

2 we get

x1 −Q =
(β1+β2+β3)[(α1+α2+α3)−α0][2̃a−G]

E

−
4α0β0(β1+β2+β3)[(α1+α2+α3)−α0]

[β0−(β1+β2+β3)]
+(β1+β2+β3)δ

2

E

+ 2(β1+β2+β3)[α0−(α1+α2+α3)+G]δ
E

=
2(β1+β2+β3)[(α1+α2+α3)−α0][̃a−G]

E

−
4α0(β1+β2+β3)[(α1+α2+α3)−α0][β0−(β1+β2+β3)]

[β0−(β1+β2+β3)]

E

= 4α0(β1+β2+β3)[(α1+α2+α3)−α0]
E

−
4α0(β1+β2+β3)[(α1+α2+α3)−α0][β0−(β1+β2+β3)]

[β0−(β1+β2+β3)]

E
= 0,

where

E = 2(β1 + β2 + β3)×[
b̃[(α1 + α2 + α3)− α0] + [β0 − (β1 + β2 + β3)]δ

]
,

G = [(α1 + α2 + α3)− α0]

Similarly, we can show that

x2 =
α0x1 + α1x−l+1 + α2x−m+1 + α3x−k+1

β0x1 + β1x−l+1 + β2x−m+1 + β3x−k+1

=
α0Q+ (α1 + α2 + α3)P

β0Q+ (β1 + β2 + β3)P
= P.
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By using the mathematical induction, we have

xn = Q and xn+1 = P, n ≥ −k.

Now, the proof is completed.

5 Global stability
In this section we study the global asymptotic stability of
the positive solutions of Eq.(1).

Lemma 1 For any values of the quotient αi

βi
for i =

0, 1, 2, 3, the function F (u0, u1, u2, u3) defined by Eq.(3)
is monotonic in its arguments.

Proof. By differentiating the function F (u0, u1, u2, u3)
given by the formula (3) with respect to ui (i = 0, 1, 2, 3)
we obtain

Fu0 =
(α0β1 − α1β0)u1 + (α0β2 − α2β0)u2 + L1u3

(β0u0 + β1u1 + β2u2 + β3u3)2
,

(20)
where L1 = (α0β3 − α3β0) and

Fu1 =
− (α0β1 − α1β0)u0 + (α1β2 − α2β1)u2 + L2u3

(β0u0 + β1u1 + β2u2 + β3u3)2
,

(21)
where L2 = (α1β3 − α3β1)

Fu2 =
− (α0β2 − α2β0)u0 − (α1β2 − α2β1)u1 + L3u3

(β0u0 + β1u1 + β2u2 + β3u3)2

(22)
where L3 = (α2β3 − α3β2) and

Fu3 =
− (α0β3 − α3β0)u0 − (α1β3 − α3β1)u1 − L4u3

(β0u0 + β1u1 + β2u2 + β3u3)2
.

(23)
where L4 = (α2β3 − α3β2).

From Eqs.(20)–(23), we see that the function
F (u0, u1, u2, u3) is monotonic in its arguments. Now, the
proof is completed.

Theorem 7 The positive equilibrium point x̃ of Eq.(1) is a
global attractor if the conditions

α0β1 ≥ α1β0, α0β2 ≥ α2β0, α0β3 ≥ α3β0,
α1β2 ≥ α2β1,
α1β3 ≥ α3β1,
α2β3 ≥ α3β2 and α3 ≥ (α0 + α1 + α2)

(24)

hold.

Proof. Let {xn}∞n=−k be a positive solution of Eq.(1).
To prove this theorem, it suffices to prove that xn →
x̃, as n → ∞. Let us prove this as follows: Let
F : (0,+∞)4 −→ (0,+∞) be a continuous function de-
fined by the formula (3). With reference to Lemma 7, we
notice that if the conditions

α0β1 ≥ α1β0, α0β2 ≥ α2β0, α0β3 ≥ α3β0, α1β2 ≥ α2β1,
α1β3 ≥ α3 and α2β3 ≥ α3β2

hold, then the function F (u0, u1, u2, u3) is non-decreasing
in u0 and non-increasing in u3.

Now, from Eq.(1) we have

xn+1 ≤ α0xn + α1xn−l + α2xn−m + α3(0)

β0xn + β1xn−l + β2xn−m + β3(0)

≤ α0

β0
+
α1

β1
+
α2

β2
, n ≥ 0.

Consequently, we obtain

xn ≤ α0

β0
+
α1

β1
+
α2

β2
= H, n ≥ 1, (25)

where H is a positive constant. On the other hand, we
deduce from Eq.(1) that

xn+1 ≥ α0(0) + α1(0) + α2(0) + α3(H)

β0(H) + β1(H) + β2(H) + β3(H)

≥ α3

β0 + β1 + β2 + β3
, n ≥ 0.

Consequently, we obtain

xn ≥ α3

β0 + β1 + β2 + β3
= h, n ≥ 1, (26)

where h is a positive constant. From the inequalities (25)
and (26), we find that

h ≤ xn ≤ H, n ≥ 1.

Thus the sequence {xn} is bounded. It follows by the
method of full limiting sequences ([10,16]) that there ex-
ist solutions {In}∞n=−∞ and {Sn}∞n=−∞ of Eq.(1) with

I = I0 = lim inf
n→∞

xn ≤ lim sup
n→∞

xn = S0 = S, (27)

where
In, Sn ∈ [I, S], n = 0,−1, ...

On the other hand, it follows from Eq.(1) that

I =
α0I−1 + α1I−l−1 + α2I−m−1 + α3I−k−1

β0I−1 + β1I−l−1 + β2I−m−1 + β3I−k−1

≥ α0I + α1I−l−1 + α2I−m−1 + α3S

β0I + β1I−l−1 + β1I−m−1 + β2S

≥ (α0 + α1 + α2) I + α3S

β0I + (β1 + β2 + β3)S
.

Consequently, we have

(α0 + α1 + α2) I + α3S − β0I
2 ≤ (β1 + β2 + β3)SI.

(28)
Similarly, we deduce from Eq.(1) that

S =
α0S−1 + α1S−l−1 + α2S−m−1 + α3S−k−1

β0S−1 + β1S−l−1 + β2S−m−1 + β3S−k−1

≤ α0S + α1S−l−1 + α2S−m−1 + α3I

β0S + β1S−l−1 + β2S−m−1 + β3I

≤ (α0 + α1 + α2)S + α3I

β0S + (β1 + β2 + β3)I
.
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Consequently, we have

(α0+α1+α2)S+α3I−β0S2 ≥ (β1+β2+β3)SI. (29)

It follows from the inequalities (28) and (29) that

(I − S) [β0(I + S) + α3 − (α0 + α1 + α2)] ≥ 0. (30)

Since α3 ≥ (α0 + α1 + α2) we deduce from (30) that

I ≥ S. (31)

Consequently, we have I = S.
From Theorems 3 and 7, we arrive at the following

result:

Theorem 8 The positive equilibrium point x̃ of Eq.(1) is
globally asymptotic stable.

6 Numerical experiments on the
main results

In order to illustrate the results of the previous sections and
to support our theoretical discussions, we consider sever-
al interesting numerical experiments in this section. These
experiments represent different types of qualitative behav-
ior of solutions to the nonlinear difference equation (1).

Experiment 1. Figure 1 shows that Eq.(1) has no prime
period two solution if l,m, k are even. Choose l = 2, m =
4, k = 6, x−6 = 1, x−5 = 2, x−4 = 3, x−3 = 4, x−2 =
5, x−1 = 6, x0 = 7, α0 = 2, α1 = 10, α2 = 20, α3 =
15, β0 = 30, β1 = 3, β2 = 4, β3 = 5.
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Figure 1

Experiment 2. Figure 2 shows that Eq.(1) has no prime
period two solution if l,m are even and k is odd. Choose
l = 2, m = 4, k = 1, x−4 = 1, x−3 = 2, x−2 =
3, x−1 = 4, x0 = 5, α0 = 2, α1 = 10, α2 = 20, α3 =
5, β0 = 30, β1 = 3, β2 = 4, β3 = 5.

Experiment 3. Figure 3 shows that Eq.(1) has no prime
period two solution if l,m are odd and k is even. Choose
l = 1, m = 3, k = 2, x−3 = 1, x−2 = 2, x−1 = 3, x0 =
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4, α0 = 15, α1 = 2, α2 = 6, α3 = 20, β0 = 30, β1 =
3, β2 = 4, β3 = 5.

Experiment 4. Figure 4 shows that Eq.(1) has no prime
period two solution if l, k are even and m is odd. Choose
l = 2, m = 3, k = 4, x−4 = 1, x−3 = 2, x−2 =
3, x−1 = 4, x0 = 5, α0 = 15, α1 = 2, α2 = 6, α3 =
20, β0 = 30, β1 = 3, β2 = 4, β3 = 5.
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Figure 4

Experiment 5. Figure 5 shows that Eq.(1) has no prime
period two solution if m, k are even and l is odd. Choose
l = 1, m = 2, k = 4, x−4 = 1, x−3 = 2, x−2 =
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3, x−1 = 4, x0 = 5, α0 = 15, α1 = 2, α2 = 10, α3 =
20, β0 = 30, β1 = 3, β2 = 4, β3 = 5.
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Figure 5

Experiment 6. Figure 6 shows that Eq.(1) has no prime
period two solution if m, k are odd and l is even. Choose
l = 2, m = 1, k = 3, x−4 = 1, x−3 = 2, x−2 =
3, x−1 = 4, x0 = 5, α0 = 20, α1 = 10, α2 = 15, α3 =
5, β0 = 30, β1 = 3, β2 = 4, β3 = 5.
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Figure 6

Experiment 7. Figure 7 shows that Eq.(1) has no prime
period two solution if l, k are even and m is odd. Choose
l = 2, m = 1, k = 4, x−4 = 1, x−3 = 2, x−2 =
3, x−1 = 4, x0 = 5, α0 = 20, α1 = 10, α2 = 15, α3 =
5, β0 = 30, β1 = 3, β2 = 4, β3 = 5.

Experiment 8. Figure 8 shows that Eq.(1) has no prime pe-
riod two solution if l,m, k are odd. Choose l = 1, m = 3,
k = 5, x−5 = 1, x−4 = 2, x−3 = 3, x−2 = 4, x−1 =
5, x0 = 6, α0 = 2, α1 = 10, α2 = 20, α3 = 5, β0 =
3, β1 = 30, β2 = 4, β3 = 5.

Experiment 9. Figure 9 shows that Eq.(1) has prime peri-
od two solution and l < m < k. Choose l = 1, m = 3,
k = 5, p = max{l,m, k} = 5, x−5 = 4.7, x−4 =
0.09, x−3 = 4.7, x−2 = 0.09, x−1 = 4.7, x0 =
0.09, x1 = 4.7, x2 = 0.09, α0 = 2, α1 = 10, α2 =
20, α3 = 10, β0 = 30, β1 = 3, β2 = 4, β3 = 1.
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0 2 4 6 8 10 12 14 16 18 20
0

1

2

3

4

5

6

n−iteration

so
lu

tio
n 

of
 X

(n
+

1)

plot of X(n+1)=((A*X(n)+B*X(n−1)+C*X(n−3)+D*X(n−5))/(a*X(n)+b*X(n−1)+c*X(n−3)+d*X(n−5)))

Figure 8

Experiment 10. Figure 10 shows that the solution of E-
q.(1) has global stability and l < m < k. Choose l =
2, m = 4, k = 6, x−6 = 1, x−5 = 2, x−4 = 3, x−3 =
4, x−2 = 5, x−1 = 6, x0 = 7, α0 = 0.5, α1 =
0.25, α2 = 1, α3 = 2, β0 = 3, β1 = 2, β2 = 10, β3 =
25.

Remark Note that experiments 1– 8 verify Theorem 5
which shows that Eq.(1) has no prime period two solution,
while experiment 9 verifies Theorem 6 which shows that
Eq.(1) has prime period two solution. But experiment 10
verifies Theorems 3,8 which shows that if the condition-
s α0β1 ≥ α1β0, α0β2 ≥ α2β0, α0β3 ≥ α3β0, α1β2 ≥
α2β1, α1β3 ≥ α3β1, α2β3 ≥ α3β2 and α3 ≥ (α0+α1+
α2) hold, then the solution of Eq.(1) has globally asymp-
totic stable.
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